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The use of average natural orbitals is compared to some better known methods of performing 
limited and restricted CI calculations. It is found that a moderately extensive restricted valence shell 
CI computation using a subset of these orbitals is an efficient and accurate method for the calculation 
of state wavefunctions. Total and electronic excitation energies have been calculated for the 
BH molecule. 

Die Verwendung yon gemittelten nattirlichen Orbitalen wird mit einigen besser bekannten 
Methoden beschfiinkter CI-Rechnungen verglichen. Man findet, dal3 eine eingeschr~inkte Valenz- 
schalen-CI-Rechnung yon m~gigem Umfang mit einer Untermenge der genannten Orbitale eine 
leistungsf~ihige und genaue Methode zur Berechnung der Wellenfunktion eines Zustandes darstellt. 
Die Gesamtenergien und elektronische Anregungsenergien wurden flit das BH-Molekiil berechnet. 
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Introduction 

The computation of accurate electron excitation energies can be an expensive 
task since it usually requires extensive calculations to be repeated for each state 
of interest. Efficiency is therefore a more important criterion for such calcula- 
tions than for those in which properties of only one state are determined. This 
paper illustrates a method which combines accuracy with efficiency and compares 
the results obtained for BH with those obtained from some well known CI 
methods. 

Results and Discussion 

Choice of Atomic Orbitals 

Since most sets of atomic orbitals quoted in the literature have been 
optimized for ground state wave functions only, our set of orbitals includes 
additional ones chosen for the more diffuse excited states. The core of this set of 
atomic orbitals for BH is a so-called "double zeta" set of contracted gaussian 
orbitals. These orbitals (Boron s 1, s2, s3, s4, Pl, P2 and Hydrogen Sl plus the 
first gaussian orbital of sz, shown in Table 1) are taken from published works. 

* Taken in part from a Ph. D_ thesis submitted to the University of Toronto in 1971. 
** Person to whom correspondence should be addressed. 
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Table i. Contracted gaussian function basis set for BH 

Atom Type Exponent Coefficient 

Boron 

Hydrogen 

s 1 10411.559 0.00602874 
1576.1919 0.03414955 
361.66537 0.21343952 

98.726437 0.81532002 
S 2 31.781408 0.14008659 

10.842225 0.32796748 
4.9774725 0.43910393 
1.5888265 0.21500160 

S 3 2.8590772 --0.10128056 
0.35556953 0.50247350 
0.14972248 0.56801575 

S4 0.07433206 0.91758759 
0.03701718 0.08939910 

s5 0.1 1.0 
s 6 0.0556 0.82613835 

0.0185 0.20653459 
Pl 26.8281 0.00918291 

5.81572 0.06903735 
1.63092 0.29193173 

0.54881 0.74403225 
Pz 0.204009 0.61097738 

0.0822550 0.40114602 
0.0356435 0.06767884 

P3 0.2415 1.0 
s 1 19.24060 0.32828011 

2.89915 0.23120807 
0.65341 0.81723826 

s 2 0.17758 0.92065144 
0.05 0.10229460 

s 3 0.1 1.0 
Pl 0.5 1.0 

The orbitals centred on the Boron nucleus are those of Huzinaga [1] while 
those on Hydrogen are from Basch et al. [2]. 

These orbitals are augmented with orbitals which increase electron density 
in the bonding region of the molecule rather than with orbitals optimized for 
improved ground state energy. This latter approach invariably leads to orbitals 
highly localized on the atomic nucleus; i.e. to better representation of the Boron 
ls cusp. The maximum density of the radial part of a gaussian orbital is related 
to the value of the exponent, ~, by the relationship 

n - 1  
e -  2r2 

For an s-type gaussian orbital (n = 1) the maximum is always at r = 0 and so ex- 
ponents were selected which came between those of the two most diffuse orbitals 
in the double zeta set. For p-type gaussian orbitals (n = 2) on Boron the value of r 
in the above expression was set at the position of the second maximum of the 
numerical Hartree-Fock 2s orbital [31. This value (r = 1.439 bohr) yields an ex- 
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ponent of 0.2415. An exponent of 0.5 was arbitrarily chosen for the p-type 
gaussian orbital on H atom which places the maximum density at r = 1 bohr 
from the H nucleus or slightly less than the mid-point of the BH axis. The 
full set of atomic orbitals used consists of 21 contracted gaussian orbitals; 6 
s-type and 3 sets of p-type orbitals on Boron and 3 s-type and 1 set of p-type 
orbitals on Hydrogen (Table 1). 

SCF Calculations 

An SCF calculation was performed on BH using the above set of atomic 
orbitals for a nuclear separation of 2.3291 bohr. This calculation may be 
compared with two published ones. Cade and Huo [4] using a large set of Slater 
orbitals obtained an energy of -25.1314 hartree. This energy is taken to be the 
Hartree-Fock limit for BH. Kaufman and Burnelle [51 using a large set of 
gaussian orbitals obtained -25.1298 hartree. In spite of the fact that the 
augmenting orbitals used in this work were not chosen on an energy lowering 
criterion, quite a good energy is obtained. This energy, -25.1196 hartree, is only 
0.0118 hartree above the Hartree-Fock limit. 

Just as the ground state wavefunction may be approximated by a single 
configuration, the excited state wavefunctions may be also. These configura- 
tions are constructed by replacing one of the occupied orbitals in the SCF 
ground state wavefunction with one of the virtual orbitals. First, however, 
it must be pointed out that since BH belongs to the Coov space point group, the 
SCF ground state wavefunction has the form 

d a l ( 1 )  o-1(2) 0-2(3) a2(4) aa(5) a3(6) 

(where a I is an orbital which transforms according to the 22 + irreducible re- 
presentation). The SCF calculation involves only atomic orbitals of a symmetry 
and so results in SCF orbitals of a symmetry only. Orbitals of rc symmetry 
were formed by symmetrically orthonormalizing [61 atomic orbitals of zr sym- 
metry. Thus the A 1 ~ single configuration wavefunction formed by replacing one 
of the a orbitals by a ~ virtual orbital which is an orthonormalized symmetry 
adapted orbital is tGo poor to be used for the calculation of transition energy. 

The B~22 + ~ X 1 Z  + transition energy is calculated to be 0.246 hartree com- 
pared to an experimental value of 0.238 hartree [-7]. The observed C122 + state 
wavefunction cannot be approximated by the virtual orbital technique since it 
has no single principle configuration but rather a combination of two configura- 
tions involving double substitutions by orbitals of ~ symmetry. 

CI Calculations 

All CI calculations were performed by making substitutions for the orbitals 
of the valence electrons only. We are calling this a valence shell CI. The calcula- 
tion is a full valence shell CI when all possible substitutions of the valence 
orbitals by all combinations of virtual orbitals are included in the wavefunction. 
We refer to a full double valence shell CI when only the configurations formed 
by single and double replacements of the four valence orbitals are included in 
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the wavefunction. The term restricted valence shell CI refers to a calculation 
where all possible substitutions of the valence orbitals are made from a subset 
of the virtual orbitals. Finally a limited valence shell CI is one in which a subset 
of the configurations of a full valence shell CI are used. (The full double valence 
shell CI and the restricted valence shell CI are particular examples of a limited 
valence shell CI). 

The partitioning of the CI calculation into core and valence shell is after 
Miller and Ruedenberg [8] and is based on the postulate that the core electrons 
are relatively unaffected by the molecular environment. The core correlation 
energy can therefore be treated as a constant quantity and attention confined 
to the valence electrons only. They calculate the total correlation energy and the 
core correlation energy of BH to be 0.152 hartree and 0.039 hartree re- 
spectively, leaving a valence shell correlation energy of 0.113 hartree. 

Full Double Valence Shell CI Calculations 

A full double valence shell CI calculation was performed for each of the 
five lowest singlet electronic states of BH at a separation of 2.3291 bohr. The 
*2; + wavefunctions included 253 configurations while the *H wavefunction in- 
cluded 376 configurations. Only the X 1 Z  + and the A1H states are represented 
accurately since higher state wavefunctions have important  terms which involve 
higher than double replacement. The energies obtained were -25.1706 hartree 
and -25.0503 hartree respectively, yielding a transition energy of 0.1202 hartree 
(experimental, 0.105 hartree [7]). The ground state energy represents an im- 
provement of 0.0510 hartree over the SCF result. This corresponds to a recovery 
of 45 % of the valence shell correlation energy. 

These wavefunctions cannot  be improved simply by performing a full valence 
shell CI  calculation since this would involve 3526 1Z+ and 3410 *H configura- 
tions. A working maximum for the present computer  program is 2500 configu- 
rations; hence we turned our attention to several forms of restricted and limited 
valence shell CI methods, 

Restricted Valence Shell CI Calculations 

The first at tempt was to restrict the substituting orbitals to a subset of the 
virtual orbitals choosing those with lowest orbital energy t. This subset included 
5 virtual orbitals of a symmetry and 4 of ~ symmetry. The ground state wave- 
function includes 622 configurations and yields an energy of -25.1443 hartree. 
This corresponds to a lowering of only 0.0247 hartree or 22% of the valence shell 
correlation energy. In addition, a similar calculation for the A 1i/state (588 con- 
figurations) leads to a predicted A*/ /*- -X*~ + transition energy of 0.210 hart- 
ree ! 

t Strictly speaking the term "orbital energy" applies only to the SCF orbitals. In the case of the 
orthonormalized symmetry orbitals, the value calculated in the same manner as an orbital energy is 
used; i.e. the term orbital energy is used for the diagonal Lagrangian multiplier of any orbital when 
substituted into the SCF equation. This is reasonable in the sense that increasing orbital energies are 
obtained as the number of nodes in the orbital increases, as found for SCF orbitals. 
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It is obvious that this is an extremely poor method of extending a calculation. 
This conclusion is extremely relevant considering that restriction of substituting 
orbitals in this way is a relatively common practice. 

Limited Valence Shell CI Calculations 

The next procedures that were considered limit the configurations rather 
than restricting the orbitals. In the first case, the sums of the orbital energies 
of the orbitals in each configuration were listed and those with the lowest sums 
selected. It is felt that this is justified on the grounds that this would rank the 
configurations in a similar manner to toal energy. 

Two limited valence shell CI calculations were made, one for the X1S + 
state and one for the AaFI state, both at 2.3291 bohr and both limited to 
2000 configurations. The energies obtained were -25.1828 hartree and 
-25.0700 hartree ~respectively. The A I I I ~  X1S  + transition energy is predicted 
almost exactly equal to experimental while the ground state energy represents a 
lowering of 0.0632 hartree or 56% of the valence shell correlation energy. 

Since this size of calculation is unsuitable for a series of calculations, the 
number of configurations was further limited to 700 by the same methodandnew 

calculations performed. The ground state energy, -25.1765 hartree, is only 
slightly below that for the full double valence shell CI calculation. The transition 
energy between the two states, 0.1215 hartree, is also similar to the full double 
valence shell CI calculation. This demonstrates the limitation of this simple 
procedure. 

The use of Perturbation Theory for limiting configurations has already been 
described [9]. This theory was applied to the two sets of 2000 configurations dis- 
cussed above in order to limit the wavefunctions to the most significant 748 ~2; + 

Table 2, Molecular state energies of BH 

Calculation Energy (hartree) 

X I  ~ + AI FI AE 

Full double valence shell CI" - 25.1706 - 25.0503 0.1202 
Restricted valence shell CI b - 25.1443 - 24.9341 0,2102 
Limited valence shell c 

A - 25.1828 - 25,0700 0.1127 
B - 25.1765 - 25.0549 0.1215 
C - 25.1824 - 25.0695 0.1128 
Experimental transition energy [7] 0.105 

a 253 1Z'+ and 376 1II configurations. 
b Basis orbitals restricted to 12virtualorbitals  withlowest orbi talenergy;622 aN+ and588 ~Ilconfigura- 
tions. 

Full valence shell CI restricted as follows: 

A, 2000 configurations of each symmetry selected on sum of orbital  energies oforbitals in each configura- 
tion. 
B. 700 configurations selected as for A, 
C. 748 ~r  + and 740 1/ /configurat ions selected by perturbation theory. 
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and 7401/ /  configurations. The energies obtained, -25.1824 hartree and 
-25.0695 hartree for the XIE  + and AXlI states respectively, are virtually 
identical to the calculations with 2000 configurations. This is a significant 
demonstration of the applicability of perturbation theory for this type of 
problem. 

The various energies obtained in the above calculations are summarized 
in Table 2. 

Natural Orbital Calculations 

The full double valence shell CI wavefunctions discussed above were analyzed 
in terms of their natural orbitals. When the N O  are put in order of increasing 
occupation number, the first twelve include 8 of a and 4 of rc symmetry as for 
the 12 orbitals ranked by orbital energy previously. These 12 N O  were selected 
for restricted valence shell CI calculations. The results of these calculations as 
given in columns 1 and 3 of Table 3, are essentially the same as for the 2000 con- 
figuration calculation described above. In fact, the slight difference in the AII-I 
energy is such that the transition energy agrees better with the experimental 
value. The calculations involved 622 1Z+ and 588 1H configurations respec- 
tively. 

Table 3. Total and transition energies" for states of BH calculated with NO and ANO b 

Quantity XIZ+(NO) X~E+(ANO) A~//(NO) C1A(ANO) B~Z+(ANO) C1E(ANO) 

Total energy -25.1827 -25.1802 -25.0710 -24.9534 -24.9600 -24,%77 
Transition energy - - 0.1083 0.2268 0.2203 0.2625 
Experimental 0.105 0.211 0.238 0.252 
transition energy [111 

a In hartree. 
b Restricted valence shell CI using 12 NO or ANO from full double valence shell CI wavefunctions. The NO or 
ANO with highest occupancy numbers were chosen resulting in 622 1Z+ and 588 117 configurations. 

Average Natural Orbital Calculations 

The use of N O  also requires separate calculations to be performed for each 
state of interest. Therefore, in order to look at values predicted for several states, 
the use of average natural orbitals (ANO) was investigated. The ANO are cal- 
culated in the same manner as N O  except that the one particle density 
matrices of the wavefunctions in question are first averaged and then the 
resultant matrix is diagonalized. 

Each state has a one particle density matrix p~0 which may be diagonalized 

to give the N O  {)~i} : 

p}O) p } l ) p i a ) . . ,  p~.~ 

{z ~ } {z 1 } {x = } ... {z ~ 
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Each set of NO {)(} is an orthonormal set but the sets are not orthogonal to 
each other. Since the individual density matrices, p[i) are all hermitian, their 
average P~, where 

P1A = p~o) -t- p~l)  _+_ p~2) . . . p~ , )  

n + l  

must also be hermitian and can be diagonalized. The diagonalization of pA 
yields {~} the "average" NO or ANO. 

The ANO resulting from the averaged density matrix of the full double valence 
shell CI wavefunctions of each of five singlet states of BH (three 1X+ and two 
components of the CIA state) were formed. The restricted valence shell CI 
calculation using the 12 ANO with highest occupation numbers was then per- 
formed. These 12 ANO also include eight of a 'and four of n symmetry and so 
yield 622 configurations of 1X symmetry and 588 Of 117 symmetry. The Wave- 
functions for five states together with total energy were obtained from this 
calculation. These results are included in columns 2, 4, 5 and 6 of Table 3. The 
ground state energy is only 0.0025 hartree higher than from the NO calculation 
indicating that the loss in absolute accuracy is very slight. The electronic tran- 
sition energies are all close to experimental values. The energies of the C 1A and 
B 1X + are calculated very close together and occur intermediate to the experimen- 
tal values for the two states. More extensive calculations, to be published 
separately, have indicated that the reason for this is that configurations involving 
substitutions by orbitals of 6 symmetry are important for accurate representation 
of these two states. There were no orbitals of this symmetry resulting from our 
atomic orbital basts. 

Conclusion 

The use of a subset of ANO formed by averaging the density matrices of a set 
wavefunctions resulting from intermediate calculations (in this case limiting the 
configuration to double substitutions) as basis orbitals for a more extensive 
calculation (restric, ted valence shell CI) yielding several state wavefunctions at 
one time has been found to yield results comparable in accuracy other 
sophisticated CI procedures. The intrinsic efficiency of this method, however, 
suggests that it is more suitable for the calculations of multiple state wavefunc- 
tion of molecules. 
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